

Shyh Wang Hall (B59) completed June 2015

Four story 150,000 GSF

- Two 20ksf office floors, 300 offices
- 20k -> 28ksf HPC floor
- 12.5MW expandable to 20+MW
- Current demand is ~7MW

Energy Efficient

- Year-round compressor free air and water cooling
- LEED Gold
- PUE < 1.1

Room Air & Cooling Water

- Compression free cooling
- Most hours, single pass air
 - Humidity Control very challenging
- Cooling Towers can provide 75°F or cooler water all hours of year

General Update

Cori entered production on July 1, 2017

- Compute intensive and data intensive workloads
- 9688 KNL nodes; 2388 Haswell nodes
- NVRAM Burst Buffer 1.5PB @ 1.5 TB/s
- 30 PB Lustre, > 700GB/sec

- SDN for enhanced external networking connectivity
- Containerized software with Shifter

Recent Projects with Data Collect

- Function as a Service deployment (FaaS)
- Real-time PUE calculation
- B59 significant focus of LBNL campus EE Program
 - Multiple projects completed and in progress
- Cray XC Series fan control monitoring
- Hot Aisle Containment improvements

Data Collection System

Current Data Sources

- Substations, panels, PDUs, UPS
- Cori & Edison SEDC
- One-wire Temp & RH sensors
- BMS through BACNET
- Indoor & Outdoor Particle counters
- Weather station

Future Data Sources

- Syslog
- Job Data
- Lustre + GFPS statistics
- LDMS
- 333

Rabbit MQ, Elastic, Linux

- Collects ~20K data items per second
- Over 40TB data online (100TB capacity)
- 45 days of SEDC (versus 3 hours on SMW)
- 180 days of BMS data (6X more than BMS)
- 260 days of power data

Kibana, Grafana

Data – User Access & Public Security Tension

- Challenge: General Cyber security vs User direct access to monitoring data streams
 - UI tools (Grafana, Kibana) provide visual access only
- Using Fn Project project to provide User "on demand" access to gathered data
 - FaaS Function as a Service
 - Provides REST-like API for users to link their applications to NERSC Elastic data

PUE Measurement and Reporting

Realtime PUE

- Monthly average has been ~1.08 (May Sept., 2018)
- Calculating Level 1 and 2 PUE
 - Difference never > 0.01
- Challenge: ~ 60 measurement points at differing measurement intervals
- Testing several calculation methods
 - 15-minute interval calculation Many fails since substation metering is at same interval rate
 - Last value 5-minute rolling window Non-coincident data points, but produces smoother results
 - Moving average 5-minute window within 30-minute sample captures

 Measurement averaging helps reduce effect of non-coincident data
 points in 5-minute rolling window alone

PUE Measurement and Reporting

• 50+ Monitoring Points

High granularity for LBNL Campus "Mechanical Metrics" within SkySpark energy info system

PUE Calc. Point	Substation	PUE Level	Description	PUE Calc. Point Substation		PUE Level	Description
Α	Building	1 & 2	INCOMING MAIN #2	ND1-1	590	1	UPS-1
В	590	1 & 2	MVSG SUBSTATION 590	ND1-2	590	1	UPS-2
B'	590	1 & 2	DISTRIBUTION TRANSFORMER 590 OUTPUT	ND1-3	590	1	PDU 10
С	596	1 & 2	MVSG SUBSTATION 596	ND1-4	590	1	PDU 12
C'	596	1 & 2	DISTRIBUTION TRANSFORMER 596 OUTPUT	ND1-5	590	1	PDUs 26, 28,
D	612	1 & 2	MVSG SUBSTATION 612	ND1-6	590	1	PDUs 22, 24,
D'	612	1 & 2	DISTRIBUTION TRANSFORMER 612 OUTPUT				
Е	613	1 & 2	MVSG SUBSTATION 613	ND2-1	590	2	UPS PDU
E'	613	1 & 2	DISTRIBUTION TRANSFORMER 613 OUTPUT	ND2-2	590	2	UPS PDU
F	628	1 & 2	MVSG SUBSTATION 628	ND2-3	590	2	UPS PDU
F'	628	1 & 2	DISTRIBUTION TRANSFORMER 628 OUTPUT	ND2-4	590	2	UPS PDU
N1	590	1 & 2	COMPUTE LIGHTING	ND2-5	590	2	UPS PDU
N2	590	1 & 2	GENERATOR HEATER, BATTERY CHARGER,	ND2-6	590	2	UPS PDU
N3	590	1 & 2	VESDAS, PREACTION AIR COMPRESSOR	ND2-7	590	2	UPS PDU
N4	590	1 & 2	590A5A PANEL: AHU LTG/PWR. RECPTACLES	ND2-8	590	2	UPS PDU
N5	590	1 & 2	590A6A PANEL: DOLPHIN SYSTEM, LTG.	ND2-9	590	2	EDISION
N6	590	1 & 2	E590A7A PANEL: AHU-001/11 (COMPUTE), AC-	ND2-10	590	2	CORIPDU
N7'	590	1 & 2	UE600A ENTIRE PANEL, TO BE USED TO	ND2-11	590	2	HOUSE PDU
N7"	590	1 & 2	OFFICE (NON-COMPUTE) LOADS ON UE600A	ND2-12	590	2	HOUSE PDU
N8	590	1 & 2	595A40A PANEL: COMPUTE ROOM 2101	ND2-13	590	2	HOUSE PDU
N9	590	1 & 2	COMPUTE LIGHTING, 590A15A	ND2-14	590	2	HOUSE PDU
N10'	596	1 & 2	596A1A1A ENTIRE PANEL, TO BE USED TO	ND2-15	590	2	HOUSE PDU
N10	596	1 & 2	ELEVATOR EL-01 (FREIGHT), 596A1A1A39A	ND2-16	590	2	HOUSE PDU
N11"	596	1 & 2	OFFICE LOADS, 596A1A2A	ND2-17	590	2	HOUSE PDU
N12"	596	1 & 2	Office Space Heat Loads, 596A1A3A	ND2-18	590	2	HOUSE PDU

PUE Measurement and Reporting

LBNL Campus Wide Efficiency Savings

The LBNL Campus is able to generate significant, maintained savings - primarily from improvements in building operations

LBNL Wide - Ongoing Commissioning

Additional CW Heat Exchanger & Pump Installed

In Development – Live data Scatter Plots

Additional CW Heat Exchanger & Pump Installed

Recent Development – Live data Scatter Plots

Cray XC Series - Dynamic Fan Speed Control

Blower Cabinets (6 High Performance Fans per)

- Variable from 2500 to 4000 rpm
 - Dynamic Fan Speed Control saves energy by sensing 5°C processor temp change (HPC load), then
 - Adjusts fan speed (entire row) up or down accordingly. Hottest processor(s) set speed on entire row
- Cooling Water Supply Temp control of cooling coil exiting air temp. (Typ. 68 71°F)
 - Better transfer of cooling load onto CW plant when water cooling conditions favorable

Cray XC Series - Dynamic Fan Speed Control

- April 6, 2018 DFSC turned on for all of Cori
 - Non-Dynamic defaults are 2 fan speeds
 - Normal = 3400 RPM; Max = 4000 RPM
 - Dynamic Fan Speed Control multiple fan speeds (user defined, max 15 steps)
 - 150 RPM per 5°C processor temp change; Minimum = 2500 RPM; Max = 4000 RPM
 - 11 Steps at NERSC Typical speeds are #6 and 7. Rarely above #8.

Table Step	Fan Speed (RPM)		
11	4000		
10	3850		
9	3700		
8	3550		
7	3400		
6	3250		
5	3100		
4	2950		
3	2800		
2	2650		
1	2500		

Hot Aisle Containment – Or Hot Air "Bath Tub"

Really is a "separation" or "chimney" system, not full containment

- Installed in stages from 2016 -2018
- Panelized system better accommodates equipment churn

Helps drive hot air to ceiling

- Exhaust fans pull hot air out of the building
- Return fans to AHUs

Panels located at rack front

 Provides cabling facilitation above rack without penetrations

Stayed away from drop ceiling

- Seismic floor connection costs
- Fire code complications

Why Hot instead Cold Aisle?

 Many visitor tours of compute room, so human comfort a factor

Potential night time over supply

Rear Door Row e1 Rack 4

Data Helped identify air sealing measures

Bath Tub Effect Breaks

Data Collect Challenges

- Data analysis can be difficult Good visualization tools a necessity
 - Good problem to have: Access to more raw data than is needed for task at hand
- Native Elastic Data UI Tools are limited (but improving)
 - Requires a level of data coding aptitude from users
 - User can easily create data queries (accidental or not, thus hanging entire system
 - A challenge for many staff & upper management
 - Visualization pallet is limited
 - Obtaining native sample resolution is difficult
 - UI Tools auto interpolate data interval based on time range being viewed
- Current system requires considerable admin attention
- Public security vs user data access a perpetual challenge
- Obtaining BMS control grade from native Elastic sensors is expensive

National Energy Research Scientific Computing Center

Norm Bourassa, njbourassa@lbl.gov

Measures Overview

		Energy Savings (kWh)		Water Savings	Cost Savings	PUE
	Measure Title	Estimated	Verified	Gallons	\$	Reduction
1	Install Firmware to Enable ESS Mode for UPSs		350,000	140,000	\$20,300	0.007
	Implement Tower Water Supply Temperature					
2	Reset and Reduced Tower Water Pump Speed		420,000	170,000	\$24,360	0.009
3	Reset Cooling Water Temperature Setpoint and Enable Cray Dynamic Fan Control		400,000	160,000	\$23,200	0.008
4	Install New Heat Exchanger		780,000	310,000	\$45,240	0.016
5	Install Bypass Valves		25,000	10,000	\$1,450	0.001
6	Reset Cray Air Temperature Setpoint	200,000		80,000	\$11,600	-
7	Optimize Dynamic Fan Control	200,000		80,000	\$11,600	-
8	Install Booster Pump	240,000		100,000	\$13,920	0.005
9	Install Cold Aisle Temperature Sensors and Optimize AHU SAT and Flow Control	300,000	-	120,000	\$17,400	0.006
10	Install Cray Supply Air Hoods	100,000	-	40,000	\$5,800	0.002

Sept. 2018: PUE = 1.08 (avg.)

Total	1,040,000	1,975,000	1,210,000	174,870	0.054

